Secure websites use HTTPS
View results from GE2025 and explore the electoral boundaries and more in our interactive map.
Updated 7 days ago
SINGSTAT (Singapore Department of Statistics)Source: SINGAPORE DEPARTMENT OF STATISTICS
Data Last Updated: 09/03/2016
Update Frequency: 10 years
Survey period: General Household Survey 2015
Footnotes: Note: Planning areas refer to areas demarcated in the Urban Redevelopment Authority's Master Plan 2014.
Adapted from: https://tablebuilder.singstat.gov.sg/table/CT/8182
Number Text | (Total) Total Text | (Total) 0 - 4 Text | (Total) 5 - 9 Text | (Total) 10 - 14 Text | (Total) 15 - 19 Text | (Total) 20 - 24 Text | (Total) 25 - 29 Text | (Total) 30 - 34 Text | (Total) 35 - 39 Text | (Total) 40 - 44 Text | (Total) 45 - 49 Text | (Total) 50 - 54 Text | (Total) 55 - 59 Text | (Total) 60 - 64 Text | (Total) 65 - 69 Text | (Total) 70 - 74 Text | (Total) 75 - 79 Text | (Total) 80 - 84 Text | (Total) 85 & Over Text | (Males) Total Text | (Males) 0 - 4 Text | (Males) 5 - 9 Text | (Males) 10 - 14 Text | (Males) 15 - 19 Text | (Males) 20 - 24 Text | (Males) 25 - 29 Text | (Males) 30 - 34 Text | (Males) 35 - 39 Text | (Males) 40 - 44 Text | (Males) 45 - 49 Text | (Males) 50 - 54 Text | (Males) 55 - 59 Text | (Males) 60 - 64 Text | (Males) 65 - 69 Text | (Males) 70 - 74 Text | (Males) 75 - 79 Text | (Males) 80 - 84 Text | (Males) 85 & Over Text | (Females) Total Text | (Females) 0 - 4 Text | (Females) 5 - 9 Text | (Females) 10 - 14 Text | (Females) 15 - 19 Text | (Females) 20 - 24 Text | (Females) 25 - 29 Text | (Females) 30 - 34 Text | (Females) 35 - 39 Text | (Females) 40 - 44 Text | (Females) 45 - 49 Text | (Females) 50 - 54 Text | (Females) 55 - 59 Text | (Females) 60 - 64 Text | (Females) 65 - 69 Text | (Females) 70 - 74 Text | (Females) 75 - 79 Text | (Females) 80 - 84 Text | (Females) 85 & Over Text |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Null)0.0% | (Null)12.7% | (Null)29.8% | (Null)29.3% | (Null)29.8% | (Null)29.8% | (Null)30.3% | (Null)29.3% | (Null)29.3% | (Null)28.5% | (Null)28.2% | (Null)28.2% | (Null)28.5% | (Null)28.2% | (Null)28.8% | (Null)29.6% | (Null)31.1% | (Null)31.7% | (Null)33.0% | (Null)33.5% | (Null)28.0% | (Null)31.4% | (Null)31.7% | (Null)32.7% | (Null)31.9% | (Null)32.7% | (Null)31.4% | (Null)30.1% | (Null)28.8% | (Null)28.8% | (Null)29.6% | (Null)29.3% | (Null)29.8% | (Null)30.3% | (Null)31.1% | (Null)33.0% | (Null)34.6% | (Null)37.2% 107.4% 205.0% 504.0% 903.7% | (Null)37.2% 108.7% 204.5% 304.7% 705.0% | (Null)28.0% | (Null)31.9% | (Null)32.2% | (Null)32.2% | (Null)31.9% | (Null)30.6% | (Null)30.9% | (Null)29.8% | (Null)29.3% | (Null)29.0% | (Null)28.8% | (Null)29.0% | (Null)30.6% | (Null)31.4% | (Null)32.5% | (Null)34.3% | (Null)34.6% | (Null)36.7% 107.4% 303.7% 1002.6% 1503.4% | (Null)36.1% 106.3% 304.2% 802.9% 1602.9% |
Total | 3902690 | 183580 | 204450 | 214390 | 242900 | 264130 | 271030 | 290620 | 301070 | 316760 | 303410 | 315090 | 295060 | 240490 | 182430 | 102630 | 81210 | 51790 | 41660 | 1916630 | 93850 | 103860 | 109400 | 124290 | 133490 | 132500 | 137850 | 143800 | 154460 | 149610 | 158470 | 147860 | 119660 | 88700 | 47780 | 36130 | 20930 | 14000 | 1986060 | 89720 | 100590 | 104990 | 118620 | 130630 | 138530 | 152770 | 157270 | 162300 | 153810 | 156630 | 147200 | 120830 | 93730 | 54850 | 45090 | 30850 | 27660 |
Ang Mo Kio- Total | 174770 | 6790 | 7660 | 8290 | 9320 | 10310 | 11170 | 12250 | 13070 | 13710 | 13000 | 14010 | 13800 | 12980 | 11050 | 6670 | 5140 | 3250 | 2300 | 84220 | 3480 | 3880 | 4200 | 4730 | 5130 | 5380 | 5800 | 6180 | 6610 | 6340 | 7000 | 6680 | 6040 | 5240 | 3070 | 2340 | 1340 | 770 | 90550 | 3310 | 3780 | 4090 | 4590 | 5180 | 5800 | 6450 | 6890 | 7100 | 6660 | 7010 | 7120 | 6940 | 5810 | 3600 | 2800 | 1910 | 1520 |
Ang Mo Kio Town Centre | 5020 | 260 | 280 | 320 | 280 | 260 | 310 | 370 | 420 | 490 | 420 | 350 | 320 | 280 | 270 | 160 | 120 | 60 | 50 | 2370 | 130 | 130 | 160 | 140 | 130 | 140 | 160 | 200 | 240 | 210 | 170 | 150 | 130 | 120 | 80 | 50 | 20 | 20 | 2640 | 130 | 160 | 160 | 150 | 130 | 170 | 210 | 220 | 260 | 210 | 170 | 170 | 160 | 150 | 80 | 70 | 40 | 40 |
Cheng San | 29770 | 1290 | 1180 | 1290 | 1400 | 1570 | 1830 | 2490 | 2490 | 2460 | 2220 | 2320 | 2290 | 2320 | 1920 | 1070 | 790 | 480 | 370 | 14400 | 670 | 630 | 680 | 760 | 780 | 860 | 1120 | 1190 | 1190 | 1110 | 1180 | 1070 | 1050 | 940 | 490 | 370 | 200 | 110 | 15370 | 620 | 550 | 620 | 650 | 800 | 970 | 1360 | 1300 | 1260 | 1110 | 1140 | 1220 | 1270 | 970 | 580 | 420 | 280 | 260 |
Chong Boon | 27900 | 910 | 1100 | 1180 | 1370 | 1520 | 1800 | 1980 | 2100 | 2040 | 2060 | 2270 | 2260 | 2250 | 1950 | 1290 | 920 | 540 | 380 | 13590 | 460 | 580 | 640 | 750 | 770 | 870 | 970 | 1000 | 990 | 980 | 1150 | 1100 | 1050 | 900 | 600 | 420 | 230 | 140 | 14310 | 460 | 520 | 530 | 620 | 750 | 930 | 1010 | 1100 | 1060 | 1080 | 1120 | 1160 | 1200 | 1050 | 690 | 500 | 310 | 240 |
Kebun Bahru | 23910 | 780 | 1010 | 1080 | 1240 | 1380 | 1490 | 1570 | 1730 | 1860 | 1860 | 1940 | 1890 | 1800 | 1610 | 1010 | 810 | 530 | 330 | 11450 | 380 | 490 | 540 | 620 | 680 | 700 | 780 | 810 | 890 | 920 | 990 | 890 | 860 | 740 | 460 | 380 | 230 | 110 | 12460 | 400 | 520 | 540 | 620 | 700 | 790 | 800 | 920 | 970 | 940 | 950 | 1000 | 940 | 870 | 550 | 430 | 300 | 230 |
Sembawang Hills | 6890 | 200 | 360 | 460 | 550 | 550 | 450 | 310 | 320 | 500 | 550 | 590 | 520 | 430 | 400 | 260 | 190 | 140 | 130 | 3240 | 90 | 160 | 220 | 260 | 260 | 230 | 140 | 130 | 230 | 270 | 280 | 270 | 210 | 190 | 130 | 80 | 50 | 50 | 3650 | 100 | 200 | 250 | 290 | 280 | 220 | 170 | 190 | 270 | 280 | 310 | 250 | 230 | 210 | 130 | 110 | 80 | 80 |
Shangri-La | 18510 | 750 | 790 | 850 | 1030 | 1120 | 1170 | 1290 | 1240 | 1370 | 1420 | 1610 | 1440 | 1360 | 1110 | 750 | 560 | 430 | 250 | 9090 | 390 | 410 | 430 | 520 | 570 | 570 | 630 | 610 | 680 | 690 | 850 | 740 | 660 | 500 | 320 | 250 | 170 | 90 | 9410 | 360 | 380 | 410 | 510 | 550 | 600 | 650 | 630 | 690 | 730 | 760 | 700 | 700 | 610 | 430 | 300 | 250 | 160 |
Tagore | 8350 | 330 | 370 | 450 | 580 | 740 | 650 | 420 | 480 | 610 | 590 | 700 | 760 | 590 | 400 | 220 | 200 | 140 | 120 | 3990 | 160 | 190 | 180 | 280 | 380 | 340 | 180 | 220 | 270 | 260 | 320 | 370 | 310 | 210 | 100 | 110 | 60 | 40 | 4360 | 170 | 180 | 270 | 300 | 360 | 310 | 240 | 260 | 340 | 320 | 380 | 400 | 280 | 190 | 110 | 90 | 70 | 80 |
Townsville | 23770 | 1140 | 1100 | 940 | 1010 | 1230 | 1480 | 1750 | 2070 | 1860 | 1560 | 1760 | 1830 | 1670 | 1590 | 1040 | 840 | 520 | 380 | 11300 | 610 | 590 | 490 | 500 | 610 | 700 | 790 | 1020 | 910 | 770 | 850 | 860 | 730 | 720 | 460 | 360 | 190 | 130 | 12470 | 520 | 510 | 450 | 520 | 610 | 780 | 960 | 1050 | 950 | 790 | 910 | 960 | 940 | 880 | 580 | 480 | 330 | 250 |
No results found
Title | Column name | Data type | Unit of measure | Description |
---|---|---|---|---|
Number | Number | Text | Number | - |
(Total) Total | Total_Total | Text | Number | - |
(Total) 0 - 4 | Total_0_4 | Text | Number | - |
(Total) 5 - 9 | Total_5_9 | Text | Number | - |
(Total) 10 - 14 | Total_10_14 | Text | Number | - |
(Total) 15 - 19 | Total_15_19 | Text | Number | - |
(Total) 20 - 24 | Total_20_24 | Text | Number | - |
(Total) 25 - 29 | Total_25_29 | Text | Number | - |
(Total) 30 - 34 | Total_30_34 | Text | Number | - |
(Total) 35 - 39 | Total_35_39 | Text | Number | - |
(Total) 40 - 44 | Total_40_44 | Text | Number | - |
(Total) 45 - 49 | Total_45_49 | Text | Number | - |
(Total) 50 - 54 | Total_50_54 | Text | Number | - |
(Total) 55 - 59 | Total_55_59 | Text | Number | - |
(Total) 60 - 64 | Total_60_64 | Text | Number | - |
(Total) 65 - 69 | Total_65_69 | Text | Number | - |
(Total) 70 - 74 | Total_70_74 | Text | Number | - |
(Total) 75 - 79 | Total_75_79 | Text | Number | - |
(Total) 80 - 84 | Total_80_84 | Text | Number | - |
(Total) 85 & Over | Total_85andOver | Text | Number | - |
(Males) Total | Males_Total | Text | Number | - |
(Males) 0 - 4 | Males_0_4 | Text | Number | - |
(Males) 5 - 9 | Males_5_9 | Text | Number | - |
(Males) 10 - 14 | Males_10_14 | Text | Number | - |
(Males) 15 - 19 | Males_15_19 | Text | Number | - |
(Males) 20 - 24 | Males_20_24 | Text | Number | - |
(Males) 25 - 29 | Males_25_29 | Text | Number | - |
(Males) 30 - 34 | Males_30_34 | Text | Number | - |
(Males) 35 - 39 | Males_35_39 | Text | Number | - |
(Males) 40 - 44 | Males_40_44 | Text | Number | - |
(Males) 45 - 49 | Males_45_49 | Text | Number | - |
(Males) 50 - 54 | Males_50_54 | Text | Number | - |
(Males) 55 - 59 | Males_55_59 | Text | Number | - |
(Males) 60 - 64 | Males_60_64 | Text | Number | - |
(Males) 65 - 69 | Males_65_69 | Text | Number | - |
(Males) 70 - 74 | Males_70_74 | Text | Number | - |
(Males) 75 - 79 | Males_75_79 | Text | Number | - |
(Males) 80 - 84 | Males_80_84 | Text | Number | - |
(Males) 85 & Over | Males_85andOver | Text | Number | - |
(Females) Total | Females_Total | Text | Number | - |
(Females) 0 - 4 | Females_0_4 | Text | Number | - |
(Females) 5 - 9 | Females_5_9 | Text | Number | - |
(Females) 10 - 14 | Females_10_14 | Text | Number | - |
(Females) 15 - 19 | Females_15_19 | Text | Number | - |
(Females) 20 - 24 | Females_20_24 | Text | Number | - |
(Females) 25 - 29 | Females_25_29 | Text | Number | - |
(Females) 30 - 34 | Females_30_34 | Text | Number | - |
(Females) 35 - 39 | Females_35_39 | Text | Number | - |
(Females) 40 - 44 | Females_40_44 | Text | Number | - |
(Females) 45 - 49 | Females_45_49 | Text | Number | - |
(Females) 50 - 54 | Females_50_54 | Text | Number | - |
(Females) 55 - 59 | Females_55_59 | Text | Number | - |
(Females) 60 - 64 | Females_60_64 | Text | Number | - |
(Females) 65 - 69 | Females_65_69 | Text | Number | - |
(Females) 70 - 74 | Females_70_74 | Text | Number | - |
(Females) 75 - 79 | Females_75_79 | Text | Number | - |
(Females) 80 - 84 | Females_80_84 | Text | Number | - |
(Females) 85 & Over | Females_85andOver | Text | Number | - |
This code can be used to test a sample API query. It retrieves the data catalogue of this dataset. For a complete guide on query parameters and syntax, please refer to the API documentation. Try it out on your browser to see the response schema.
import requests
dataset_id = "d_530099f2c0a37ed367bb94a66c9100af"
url = "https://data.gov.sg/api/action/datastore_search?resource_id=" + dataset_id
response = requests.get(url)
print(response.json())
This dataset can be reused and cited in research publications.
22 Nov 2023
Free forever for personal or commercial use, under the Open Data Licence.