A Singapore Government Agency Website
Official website links end with .gov.sg
Government agencies communicate via .gov.sg websites (e.g. go.gov.sg/open). Trusted websites

Secure websites use HTTPS

Look for a lock () or https:// as an added precaution. Share sensitive information only on official, secure websites.

Getting ready for the upcoming elections? Check out the new electoral boundaries in our interactive elections map.

Resident Population by Planning Area/Subzone of Residence, Age Group and Sex (Census of Population 2020)

Updated 12 days ago

SINGSTAT (Singapore Department of Statistics)

Source: SINGAPORE DEPARTMENT OF STATISTICS

Data Last Updated: 18/06/2021

Update Frequency: 10 years

Survey period: Census of Population 2020

Footnotes: Note: Planning areas refer to areas demarcated in the Urban Redevelopment Authority’s Master Plan 2019.

Adapted from: https://tablebuilder.singstat.gov.sg/table/CT/17560

Data explorer

ResidentPopulationbyPlanningAreaSubzoneofResidenceAgeGroupandSexCensusofPopulation2020.csv (388 rows, 130.3 KB)

Number
Text
(Total) Total
Text
(Total) 0 - 4
Text
(Total) 5 - 9
Text
(Total) 10 - 14
Text
(Total) 15 - 19
Text
(Total) 20 - 24
Text
(Total) 25 - 29
Text
(Total) 30 - 34
Text
(Total) 35 - 39
Text
(Total) 40 - 44
Text
(Total) 45 - 49
Text
(Total) 50 - 54
Text
(Total) 55 - 59
Text
(Total) 60 - 64
Text
(Total) 65 - 69
Text
(Total) 70 - 74
Text
(Total) 75 - 79
Text
(Total) 80 - 84
Text
(Total) 85 - 89
Text
(Total) 90 & Over
Text
(Males) Total
Text
(Males) 0 - 4
Text
(Males) 5 - 9
Text
(Males) 10 - 14
Text
(Males) 15 - 19
Text
(Males) 20 - 24
Text
(Males) 25 - 29
Text
(Males) 30 - 34
Text
(Males) 35 - 39
Text
(Males) 40 - 44
Text
(Males) 45 - 49
Text
(Males) 50 - 54
Text
(Males) 55 - 59
Text
(Males) 60 - 64
Text
(Males) 65 - 69
Text
(Males) 70 - 74
Text
(Males) 75 - 79
Text
(Males) 80 - 84
Text
(Males) 85 - 89
Text
(Males) 90 & Over
Text
(Females) Total
Text
(Females) 0 - 4
Text
(Females) 5 - 9
Text
(Females) 10 - 14
Text
(Females) 15 - 19
Text
(Females) 20 - 24
Text
(Females) 25 - 29
Text
(Females) 30 - 34
Text
(Females) 35 - 39
Text
(Females) 40 - 44
Text
(Females) 45 - 49
Text
(Females) 50 - 54
Text
(Females) 55 - 59
Text
(Females) 60 - 64
Text
(Females) 65 - 69
Text
(Females) 70 - 74
Text
(Females) 75 - 79
Text
(Females) 80 - 84
Text
(Females) 85 - 89
Text
(Females) 90 & Over
Text
(Null)0.0%
(Null)13.4%
(Null)30.7%
(Null)30.7%
(Null)30.4%
(Null)30.4%
(Null)29.6%
(Null)28.9%
(Null)29.9%
(Null)28.9%
(Null)29.4%
(Null)29.1%
(Null)29.1%
(Null)29.1%
(Null)29.4%
(Null)29.6%
(Null)30.4%
(Null)33.5%
(Null)34.3%
(Null)36.3%
106.2%
203.1%
402.8%
1202.6%
(Null)36.6%
107.0%
204.4%
303.6%
603.9%
(Null)28.6%
(Null)33.2%
(Null)32.2%
(Null)32.5%
(Null)33.0%
(Null)32.5%
(Null)32.2%
(Null)30.9%
(Null)30.2%
(Null)29.9%
(Null)29.1%
(Null)30.4%
(Null)29.9%
(Null)30.7%
(Null)30.9%
(Null)32.2%
(Null)35.6%
(Null)37.1%
105.4%
204.1%
403.4%
1303.1%
(Null)39.9%
108.0%
205.2%
405.4%
605.4%
(Null)43.0%
1012.1%
209.5%
3010.3%
405.7%
(Null)28.6%
(Null)32.5%
(Null)33.0%
(Null)32.2%
(Null)31.4%
(Null)30.9%
(Null)31.2%
(Null)30.9%
(Null)30.2%
(Null)30.4%
(Null)30.2%
(Null)29.9%
(Null)29.6%
(Null)31.2%
(Null)32.2%
(Null)32.2%
(Null)35.6%
(Null)36.1%
(Null)38.7%
107.0%
203.4%
803.4%
1104.1%
(Null)39.7%
108.2%
204.6%
504.9%
605.2%
Total404421018308019874020639021523024454028700029780029952029929031174029607030583028463022940017001090990665103659020880197756093390101730104970109870124620142380143020141360142800151690145380152960141470112610808204077027890135206310206665089690970101014301053701199201446201547801581601564901600501506901528701431601167908919050220386302306014560
Ang Mo Kio - Total1622805280610070307600868010320104901042011350124101186012780127301196099305770415022801130775702710302035903870441051005030489052705910572063306090548045702570180089032084700257030803440373042805220546055306070650061406450665064805350320023501390810
Ang Mo Kio Town Centre481017024028032027028029033040047037032030025023014010040202260901301201601301401301401802301901601401101006040101025508011016016014014017019023025018015016014013080603020
Cheng San28070106010401040116013301710200021502070220020502120212021701730960640350180134805705405706007108509201000980106010001060960960820420290130501460049051047056062086010801140109011401050106011701210920540360210130
Chong Boon265008608401010106013101610189017301800182019002090214021001800113078043020012860450450550590700790920830840880910105010409708205203401806013640420400470470610820980910960940990104011101130990610440250140
Kebun Bahru22620660810950101011701420141014501620179017101800175016901430840620340160106603103404604806006706606607708508309308307906403702801505011970350470490530570740740780860940890870920910790470350190110
Sembawang Hills68502103104004605005003503103705505405504804103702301501006032101101301802202402401701301702602702602501901701007040303650100190220240260260190180210290270300220220200130806040
Shangri-La159605505606407108609801020990101012101200139012701180960620430250130778030029033039043050050049049059058073063057041025018090308180260270310320430480520500530620620660640610550370250170100
Tagore795021031040045058067049034044058058067073055038021019012060379010014021021027035026016018025027030035028020010090502041601101701902503103202401802503303103603802701801101007050
Townsville21140660860930820890131014001410165015601360158016601530142088068036019099303204704904304406407006407707506507607806606203702801305011210340400430390450670710770880810710820880860810510400230140

Column legend

Title
Column name
Data type
Unit of measure
Description
NumberNumberTextNumber-
(Total) TotalTotal_TotalTextNumber-
(Total) 0 - 4Total_0_4TextNumber-
(Total) 5 - 9Total_5_9TextNumber-
(Total) 10 - 14Total_10_14TextNumber-
(Total) 15 - 19Total_15_19TextNumber-
(Total) 20 - 24Total_20_24TextNumber-
(Total) 25 - 29Total_25_29TextNumber-
(Total) 30 - 34Total_30_34TextNumber-
(Total) 35 - 39Total_35_39TextNumber-
(Total) 40 - 44Total_40_44TextNumber-
(Total) 45 - 49Total_45_49TextNumber-
(Total) 50 - 54Total_50_54TextNumber-
(Total) 55 - 59Total_55_59TextNumber-
(Total) 60 - 64Total_60_64TextNumber-
(Total) 65 - 69Total_65_69TextNumber-
(Total) 70 - 74Total_70_74TextNumber-
(Total) 75 - 79Total_75_79TextNumber-
(Total) 80 - 84Total_80_84TextNumber-
(Total) 85 - 89Total_85_89TextNumber-
(Total) 90 & OverTotal_90andOverTextNumber-
(Males) TotalMales_TotalTextNumber-
(Males) 0 - 4Males_0_4TextNumber-
(Males) 5 - 9Males_5_9TextNumber-
(Males) 10 - 14Males_10_14TextNumber-
(Males) 15 - 19Males_15_19TextNumber-
(Males) 20 - 24Males_20_24TextNumber-
(Males) 25 - 29Males_25_29TextNumber-
(Males) 30 - 34Males_30_34TextNumber-
(Males) 35 - 39Males_35_39TextNumber-
(Males) 40 - 44Males_40_44TextNumber-
(Males) 45 - 49Males_45_49TextNumber-
(Males) 50 - 54Males_50_54TextNumber-
(Males) 55 - 59Males_55_59TextNumber-
(Males) 60 - 64Males_60_64TextNumber-
(Males) 65 - 69Males_65_69TextNumber-
(Males) 70 - 74Males_70_74TextNumber-
(Males) 75 - 79Males_75_79TextNumber-
(Males) 80 - 84Males_80_84TextNumber-
(Males) 85 - 89Males_85_89TextNumber-
(Males) 90 & OverMales_90andOverTextNumber-
(Females) TotalFemales_TotalTextNumber-
(Females) 0 - 4Females_0_4TextNumber-
(Females) 5 - 9Females_5_9TextNumber-
(Females) 10 - 14Females_10_14TextNumber-
(Females) 15 - 19Females_15_19TextNumber-
(Females) 20 - 24Females_20_24TextNumber-
(Females) 25 - 29Females_25_29TextNumber-
(Females) 30 - 34Females_30_34TextNumber-
(Females) 35 - 39Females_35_39TextNumber-
(Females) 40 - 44Females_40_44TextNumber-
(Females) 45 - 49Females_45_49TextNumber-
(Females) 50 - 54Females_50_54TextNumber-
(Females) 55 - 59Females_55_59TextNumber-
(Females) 60 - 64Females_60_64TextNumber-
(Females) 65 - 69Females_65_69TextNumber-
(Females) 70 - 74Females_70_74TextNumber-
(Females) 75 - 79Females_75_79TextNumber-
(Females) 80 - 84Females_80_84TextNumber-
(Females) 85 - 89Females_85_89TextNumber-
(Females) 90 & OverFemales_90andOverTextNumber-
Google colab link
Analyse this dataset with Colab Notebook
  1. 1. Copy this dataset ID: d_d95ae740c0f8961a0b10435836660ce0
  2. 2. Click on the button below

Sample OpenAPI query

This code can be used to test a sample API query. It retrieves the data catalogue of this dataset. For a complete guide on query parameters and syntax, please refer to the API documentation. Try it out on your browser to see the response schema.

import requests
          
dataset_id = "d_d95ae740c0f8961a0b10435836660ce0"
url = "https://data.gov.sg/api/action/datastore_search?resource_id="  + dataset_id 
        
response = requests.get(url)
print(response.json())

Citation

This dataset can be reused and cited in research publications.

Singapore Department of Statistics. (2024). Resident Population by Planning Area/Subzone of Residence, Age Group and Sex (Census of Population 2020) (2025) [Dataset]. data.gov.sg. Retrieved April 28, 2025 from https://data.gov.sg/datasets/d_d95ae740c0f8961a0b10435836660ce0/view

About this dataset

Contact

feedback@data.gov.sg

Created on

22 Oct 2024

Licence

Free forever for personal or commercial use, under the Open Data Licence.

Agency

SINGSTAT (Singapore Department of Statistics)